How to pick a winning team: approaches towards the selection of computationally derived protein structures for ensemble-based virtual screening
نویسندگان
چکیده
The necessity of treating receptor flexibility in proteinligand docking has been widely acknowledged and is the subject of extensive research in the field of drug discovery [1]. The use of multiple discrete protein conformations, so-called ensemble docking, has been proven to be a valid concept to mimic target plasticity in docking experiments [2,3]. Using molecular dynamics (MD) the number of different conformations that can be generated is practically unlimited. Not all of these conformations can be included in the pose prediction or virtual screening process for reasons of computational cost. Moreover, some of them will be more suitable for docking purposes than others. The question arises if and how adequate protein conformations can be selected systematically a priori based on quantifiable structural features. For neuraminidase and cyclin-dependent kinase II, snapshots of molecular dynamics simulation trajectories have been clustered and structurally assessed by applying a variety of methods. Extensive cross docking and virtual screening experiments show that relatively large differences in docking performance are caused by only very subtle conformational changes within the protein which cannot be captured by the currently applied characterisation methods. As an alternative, cross docking capability can be used as a reliable indicator towards the selection of suitable conformations for ensemble-based virtual screening. In combination with short minimisations of docked poses in the binding site, virtual screening performance can be further improved and ensembles of MD snapshots can be built which perform as well as the generally superior holo crystal structures.
منابع مشابه
Potential and Limitations of Ensemble Docking
A major problem in structure-based virtual screening applications is the appropriate selection of a single or even multiple protein structures to be used in the virtual screening process. A priori it is unknown which protein structure(s) will perform best in a virtual screening experiment. We investigated the performance of ensemble docking, as a function of ensemble size, for eight targets of ...
متن کاملNovel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach
Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...
متن کاملNovel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach
Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...
متن کاملMolecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors
Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...
متن کاملThe assessment of computationally derived protein ensembles in protein-ligand docking
The inclusion of receptor flexibility in protein-ligand docking experiments has become a major research interest in drug discovery [1,2]. One of the possible methods applied is the use of multiple discrete protein conformations, so called ensemble docking [3,4]. With computational techniques like Molecular Dynamics (MD) a large number of different conformations can be generated, not all of whic...
متن کامل